Lecture 11. Theories of molecular evolution. Sequence divergence rates. Rates corrected for multiple hits.

4.1 Theories of molecular evolution

most mutations are deleterious and quickly removed

Classical theory

natural selection is the major evolutionary force predicts little genetic variation

because positive mutations are quickly fixed

Balance theory

most polymorphisms due to balanced selection fails to explain protein electrophoresis results 15-50% of enzyme coding genes are polymorphic with two or more widespread alleles

Neutral theory

most polymorphisms are nearly selectively neutral RGD is a major evolutionary force

Ex 1: heterozygosity and population size

neutral theory prediction for IAM: $\hat{H} = \frac{\theta}{1+\theta}$, $\theta = 4N_e\mu$ $\mu = \text{mutation rate per nucleotide site per generation}$ Fig 8.2, p. 319: 77 species data do not fit the prediction variation in H is lower than expected under neutrality given the huge variation in EPS

Possible explanations

several evolutionary forces involved different species - different magnitudes of the forces incorrectly estimated N_e

4.2 Sequence divergence rates

Two homologous sequences

sequence length: L amino acids, l=3L nucleotide sites d= observed nucleotide differences per site, $0\leq d\leq 1$ D= observed amino acid diff. per site, $0\leq D\leq 1$ t= divergence time between the homologuos sequences

Parameter estimation problem: using d, D estimate nucleotide substitution rate $\lambda = \frac{k}{2t}$ amino acid replacement rate $\Lambda = \frac{K}{2t}$ k, K = actual numbers of differences per site

Multiple hits examples

- 1) observed $A \to C$, full history $A \to T \to G \to C$
- 2) observed $A \to A$, full history $A \to T \to A$

Ex 2: bacterial gene

Coding region of trpA in two related bacterial strains K12 (E.coli) and LT2 (Salmonella typhimurium) diverged t = 80 MY ago (mammalian radiation)

0*04	004*	004*	002	002	002	002	004	004	002
GTC	GCA	CCT	ATC	TTC	ATC	TGC	CCG	CCA	AAT
Val	Ala	Pro	Ile	Phe	Ile	Cys	Pro	Pro	Asn
ATC	GCG	CCG	ATC	TTC	ATC	TGC	CCG	CCA	AAT
Ile	Ala	Pro	Ile	Phe	Ile	Cys	Pro	Pro	Asn
N	S	S							
004*	002	002	002*	204*	204	004	002	0*02*	004*
	0 0 m	0 0 m							004* GCC
GCC	GAT	GAC	GAC	CTG	CTG	CGC	CAG		GCC
GCC Ala	GAT Asp	GAC Asp	GAC Asp	CTG Leu	CTG Leu	CGC Arg	CAG Gln	ATA	GCC Ala
GCC Ala GCG	GAT Asp GAT	GAC Asp GAC	GAC Asp GAT	CTG Leu CTT	CTG Leu CTG	CGC Arg CGC	CAG Gln CAG	ATA Ile	GCC Ala GCA

Observed differences: 9 nucleotide, 2 amino acid

$$l = 60, d = 9/60 = 0.15, L = 20, D = 2/20 = 0.10$$

Uncorrected estimates of the rates λ and Λ :

$$\tilde{\lambda}=\frac{d}{2t}=0.94\cdot 10^{-9}$$
 substitutions per site per year $\tilde{\Lambda}=\frac{D}{2t}=0.63\cdot 10^{-9}$ replacements per site per year

Substitution and mutation rates

Diffusion approximation prediction of λ

$$\lambda = \#(\text{mutations per gener}) \times (\text{fixation probability})$$

= $2N\mu \times u(\frac{1}{2N}) \approx \frac{4N_e s \mu}{1 - e^{-4N_e s}}$ (additive selection)

If most substitutions are

deleterious: λ decreases with N_e advantageous: λ increases with N_e

Neutral substitutions: $\lambda = \mu$ is independent of N_e

Ex 3: diffusion simulations

Fig 8.1, p. 317: neutral substitutions for different μ average fixation time = $4N_e$ average time between substitutions $\frac{1}{\mu}$

4.3 Rates corrected for multiple hits Corrected replacement rate

Poisson process model for one amino acid site replacement number $X \in \text{Pois}(\Lambda u)$ during time uno reverse mutations for amino acids (20 letters)

Proportion of differences per site

$$D = \frac{1}{L} (1_{\{X_1 > 0\}} + \ldots + 1_{\{X_L > 0\}})$$

$$E(D) = 1 - e^{-2t\Lambda}, Var(D) = \frac{1}{L} (1 - e^{-2t\Lambda}) e^{-2t\Lambda}$$

Method of moments estimate: $D = 1 - e^{-2t\hat{\Lambda}}$ implies

Corrected replacement rate
$$\hat{\Lambda} = -\frac{\ln(1-D)}{2t}$$

Estimated
$$K$$
: $\hat{K} = -\ln(1 - D)$, $s_{\hat{K}} = \sqrt{\frac{D}{L(1-D)}}$
saturated $D = 1$ gives $\hat{K} = \infty$

Ex 2: bacterial gene

$$\hat{K}=0.1053,\,s_{\hat{K}}=0.0745,\,\hat{\Lambda}=0.66\cdot 10^{-9}$$

Markov Chain models

MC is a stochastic model assuming that given the current state future is independent of past Transition rates

	$\mathrm{To}\;\mathrm{A}$	To C	To G	То Т
From A		$r_{\rm AC}$	$r_{\rm AG}$	r_{AT}
From C	TCA		$r_{\rm CG}$	$r_{\rm CT}$
From G	r_{GA}	$r_{\rm GC}$		r_{GT}
From T	$r_{\rm TA}$	$r_{\rm TC}$	$r_{\rm TG}$	

Equilibrium base composition

$$F = (\pi_A, \pi_C, \pi_G, \pi_T)$$
 with $\pi_A + \pi_C + \pi_G + \pi_T = 1$
Substitution rate

$$\lambda = \pi_{\rm A}(r_{\rm AC} + r_{\rm AG} + r_{\rm AT}) + \pi_{\rm C}(r_{\rm CA} + r_{\rm CG} + r_{\rm CT}) + \pi_{\rm G}(r_{\rm GA} + r_{\rm GC} + r_{\rm GT}) + \pi_{\rm T}(r_{\rm TA} + r_{\rm TC} + r_{\rm TG})$$

Jukes-Cantor model

JC genetic distance corrected for multiple changes

$$\hat{k} = \frac{3}{4} \ln(\frac{3}{3-4d}), \ s_{\hat{k}} = \frac{\sqrt{d(1-d)}}{(1-\frac{4}{3}d)\sqrt{l}}$$

 $\hat{k} \approx d$ if d is small

Corrected substitution rate
$$\hat{\lambda} = \frac{\hat{k}}{2t}$$

Saturated $d=\frac{3}{4}$ when $\frac{1}{4}$ of sites match by chance gives $\hat{k}=\infty$

Ex 2: bacterial gene

$$\hat{k} = 0.1674, \, s_{\hat{k}} = 0.0576, \, \hat{\lambda} = 1.05 \cdot 10^{-9}$$

Kimura two-parameter model

Transitions are more usual than transversions

transversions: purines $\{A,G\} \longleftrightarrow$ pyrimidines $\{T,C\}$

transitions: $A \longleftrightarrow G$ and $T \longleftrightarrow C$

K2P genetic distance

$$\hat{k} = -\frac{1}{2}\ln(1 - 2P - Q) - \frac{1}{4}\ln(1 - 2Q)$$

P =differences per site due to transitions

Q=p-P= differences per site due to transversions

Ex 2: bacterial gene

4 transitions,
$$P = \frac{4}{60} = 0.0667$$

5 transversions,
$$Q = \frac{5}{60} = 0.0833$$

$$\hat{k} = 0.1221 + 0.0456 = 0.1677, \,\hat{\lambda} = 1.05 \cdot 10^{-9}$$

Ex 4: transition-transversion ratio

 α/β ratio for different sequences:

$$12S \text{ rRNA} = 1.75$$
, alpha- and beta-globins = 0.66 pseudo eta-globins = 2.7 , mtDNA = 9.0

Literature:

- 1. D.L.Hartl, A.G.Clarc. Principle of population genetics. Sinauer Associates, 2007.
- 2. R.Nielson, M. Statkin. An introduction to population genetics: theory and applications, Sinauer Associates. 2013.